Implementing a Dynamic Dry Deposition Scheme for Gaseous and Aerosol Species

Summer 2008
Dmitri Garbuzov '10
Geophysical Fluid Dynamics Laboratory
Geophysical Fluid Dynamics Laboratory

- Modeling shop affiliated with NOAA and Princeton
- Develops and uses computer simulations
 - Climate change
 - Hurricane research and forecasting
 - Predictability of weather
- Major contributor to IPCC and U.S. Climate Change Program
Atmospheric Dust

- Important but relatively poorly understood
 - Radiative forcing
 - Contributes to algae bloom, cloud seeding
 - Transport of pollution

climate.eas.gatech.edu
Motivation

- Modeling lets us see what is going on between observations
 - Where is the dust coming from?
 - Where is it going?
My Project

- The GCM is a huge, complicated piece of software
 - Made up of component models
 - “Coupled” together
 - Runs on a supercomputer
 - Developers generally work on a specific part
My Project

- Adapted and implemented a popular deposition scheme (M.L. Wesely, 1988)
- “Dynamic” resistances computed in land model
- Old parametrization had fixed values for deposition velocity

Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, M.L. Wesely, 1988
Future Work

- Still needs to be tested against previous parametrization
- Will eventually be used to model changes in surface optical properties
- Can be verified with satellite data
Experience ...